Production and In Situ Modification of Bacterial Cellulose Gels in Raisin Side-Stream Extracts Using Nanostructures Carrying Thyme Oil: Their Physicochemical/Textural Characterization and Use as Antimicrobial Cheese Packaging

Author:

Adamopoulou Vasiliki1ORCID,Salvanou Anastasia1,Bekatorou Argyro1ORCID,Petsi Theano1ORCID,Dima Agapi1ORCID,Giannakas Aris E.2ORCID,Kanellaki Maria1

Affiliation:

1. Department of Chemistry, University of Patras, 26504 Patras, Greece

2. Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece

Abstract

We report the production of BC gels by Komagataeibacter sucrofermentans in synthetic (Hestrin and Schramm; HS) and natural media (raisin finishing side-stream extracts; RFSE), and their in situ modification by natural zeolite (Zt) and activated carbon (AC) nanostructures (NSs) carrying thyme oil (Th). The NS content for optimum BC yield was 0.64 g/L for both Zt-Th (2.56 and 1.47 g BC/L in HS and RFSE, respectively), and AC-Th (1.78 and 0.96 g BC/L in HS and RFSE, respectively). FTIR spectra confirmed the presence of NS and Th in the modified BCs, which, compared to the control, had reduced specific surface area (from 5.7 to 0.2–0.8 m2/g), average pore diameter (from 264 to 165–203 Å), cumulative pore volume (from 0.084 to 0.003–0.01 cm3/g), crystallinity index (CI) (from 72 to 60–70%), and crystallite size (from 78 to 72–76%). These values (except CI and CS), slightly increased after the use of the BC films as antimicrobial coatings on white cheese for 2 months at 4 °C. Tensile properties analysis showed that the addition of NSs resulted in a decrease of elasticity, tensile strength, and elongation at break values. The best results regarding an antimicrobial effect as cheese coating were obtained in the case of the RFSE/AC-Th BC.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3