Additive-Free Method for Enhancing the Volume Phase Transition Rate in Light-Responsive Hydrogels: A Study of Micro-Nano Bubble Water on PNIPAM-co-AAc Hydrogels

Author:

Kuroki Saho1,Kubota Masaya1,Haraguchi Ryota1,Oishi Yushi1,Narita Takayuki1ORCID

Affiliation:

1. Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan

Abstract

Light-responsive hydrogels containing light-thermal convertible pigments have received interest for their possible applications in light-responsive shutters, valves, drug delivery systems, etc. However, their utility is limited by the slow response time. In this study, we investigated the use of micro-nano bubble water as a preparation solvent to accelerate the volume phase transition kinetics of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) hydrogels. The hydrogels were characterized by dynamic light scattering (DLS) and dissolved oxygen (DO) measurements. The mechanical properties, surface morphology, and chemical composition of the hydrogels were analyzed by Young’s modulus measurements, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy, respectively. The results showed that hydrogels prepared with bubble water changed the volume transition rate by more than two orders of magnitude by simply changing the standing time of the bubble water for only a few hours. The cooperative diffusion coefficients obtained from the light-induced volume transition kinetics correlated linearly with Young’s modulus and metastable state swelling ratio. Our results suggest that bubbles act as efficient water channels, thereby modulating the response rate and providing a simple, additive-free method for preparing hydrogels with a wide range of response rates.

Funder

Japan Society for the Promotion of Science

Iketani Science and Technology Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3