Gelled Liquid Crystal Nanocarriers for Improved Antioxidant Activity of Resveratrol

Author:

Mancuso Antonia1ORCID,Tarsitano Martine2ORCID,Cavaliere Rosy1,Fresta Massimo2ORCID,Cristiano Maria Chiara3ORCID,Paolino Donatella1ORCID

Affiliation:

1. Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”—Building of BioSciences, Viale S. Venuta, Germaneto, 88100 Catanzaro, Italy

2. Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”—Building of BioSciences, Viale S. Venuta, Germaneto, 88100 Catanzaro, Italy

3. Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”—Building of BioSciences, Viale S. Venuta, Germaneto, 88100 Catanzaro, Italy

Abstract

As many natural origin antioxidants, resveratrol is characterized by non-suitable physicochemical properties for its topical application. To allow its benefits to manifest on human skin, resveratrol has been entrapped within liquid crystal nanocarriers (LCNs) made up of glyceryl monooleate, a penetration enhancer, and DSPE-PEG 750. The nanosystems have been more deeply characterized by using dynamic light scattering and Turbiscan Lab® Expert optical analyzer, and they have been tested in vitro on NCTC 2544. The improved antioxidant activity of entrapped resveratrol was evaluated on keratinocyte cells as a function of its concentration. Finally, to really propose the resveratrol-loaded LCNs for topical use, the systems were gelled by using two different gelling agents, poloxamer P407 and carboxymethyl cellulose, to improve the contact time between skin and formulation. The rheological features of obtained gels were evaluated using two important methods (microrheology at rest and dynamic rheology), before testing their safety profile on human healthy volunteers. The obtained results showed the ability of LCNs to improve antioxidant activity of RSV and the gelled LCNs showed good rheological profiles. In conclusion, the results confirmed the potentiality of gelled resveratrol-loaded nanosystems for skin disease, mainly related to their antioxidant effects.

Funder

Next Generation EU—Italian NRRP

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3