Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics

Author:

Deshkar Sanjeevani1,Yeole Purva1,Mahore Jayashri1,Shinde Ankita1,Giram Prabhanjan12ORCID

Affiliation:

1. Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India

2. Department of Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA

Abstract

Worldwide, 40 to 50% of women suffer from reproductive tract infections. Most of these infections are mixed infections, are recurrent and difficult to treat with antimicrobials or antifungals alone. For symptomatic relief of infections, oral antimicrobial therapy must be combined with topical therapy. The purpose of this work is to optimize and develop a polyelectrolyte complex (PEC) of chitosan/anion for the formulation of posaconazole- and probiotic-loaded vaginal hydrogel inserts with prolonged release and significant mucoadhesion. PECs were prepared using chitosan as cationic and carrageenan, pectin and polycarbophil as anionic polymers via a lyophilization technique. PEC formation was confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry, by observing changes in its surface, physical and thermal properties. The probiotic, Lactobacillus casei, was added to the PEC during the lyophilization process and the effect on the probiotic viability was studied. The PECs were further compressed along with posaconazole to form hydrogel inserts and optimized using a 32 full-factorial design. The hydrogel inserts were assessed for swelling behavior, drug release, in vitro mucoadhesion and in vitro antifungal activity. The chitosan–pectin hydrogel insert demonstrated excellent mucoadhesion (1.25 N), sustained drug release (88.2 ± 2.4% in 8 h) and a swelling index of 154.7%. The efficacy of hydrogel inserts was evaluated using in vitro study with a co-culture of Lactobacillus casei and Candida albicans. This study revealed an increase in Lactobacilli casei count and a significant drop in the viable count of Candida albicans (4-log reduction in 24 h), indicating the effectiveness of hydrogel inserts in alleviating the fungal infection. Overall, our study demonstrated the potential of the hydrogel insert for preventing vaginal infection and restoring normal vaginal microbiota.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3