Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications

Author:

Giordano Sabrina1,Gallo Enrico2ORCID,Diaferia Carlo1ORCID,Rosa Elisabetta1,Carrese Barbara2,Borbone Nicola1ORCID,Scognamiglio Pasqualina Liana3,Franzese Monica2ORCID,Oliviero Giorgia4ORCID,Accardo Antonella1ORCID

Affiliation:

1. Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy

2. IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy

3. Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy

4. Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy

Abstract

Multicomponent hydrogels (HGs) based on ultrashort aromatic peptides have been exploited as biocompatible matrices for tissue engineering applications, the delivery of therapeutic and diagnostic agents, and the development of biosensors. Due to its capability to gel under physiological conditions of pH and ionic strength, the low molecular-weight Fmoc-FF (Nα-fluorenylmethoxycarbonyl-diphenylalanine) homodimer is one of the most studied hydrogelators. The introduction into the Fmoc-FF hydrogel of additional molecules like protein, organic compounds, or other peptide sequences often allows the generation of novel hydrogels with improved mechanical and functional properties. In this perspective, here we studied a library of novel multicomponent Fmoc-FF based hydrogels doped with different amounts of the tripeptide Fmoc-FFX (in which X= Cys, Ser, or Thr). The insertion of these tripeptides allows to obtain hydrogels functionalized with thiol or alcohol groups that can be used for their chemical post-derivatization with bioactive molecules of interest like diagnostic or biosensing agents. These novel multicomponent hydrogels share a similar peptide organization in their supramolecular matrix. The hydrogels’ biocompatibility, and their propensity to support adhesion, proliferation, and even cell differentiation, assessed in vitro on fibroblast cell lines, allows us to conclude that the hybrid hydrogels are not toxic and can potentially act as a scaffold and support for cell culture growth.

Funder

MUR—Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3