Estimating Forest Aboveground Biomass Using a Combination of Geographical Random Forest and Empirical Bayesian Kriging Models

Author:

Wu Zhenjiang123,Yao Fengmei1,Zhang Jiahua23ORCID,Liu Haoyu1

Affiliation:

1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2. The Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572000, China

3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Accurately estimating forest aboveground biomass (AGB) is imperative for comprehending carbon cycling, calculating carbon budgets, and formulating sustainable forest management plans. Currently, random forest (RF) and other machine learning models are widely used to estimate forest AGB, as they can effectively handle nonlinear relationships. However, by constructing a global model using all the samples collected from a study area, these models fail to account for the spatial heterogeneity in the AGB and cannot correct the prediction biases, thereby constraining the estimation accuracy. To overcome these limitations, we proposed a novel approach termed geographical random forest and empirical Bayesian kriging (GRFEBK). This hybrid model combines the localized modeling capability of geographical random forest (GRF) with the bias correction strength of empirical Bayesian kriging (EBK). GRF adapts RF to account for the spatial heterogeneity of the AGB, while EBK utilizes the spatial autocorrelation of residuals to correct the prediction deviations. This study was conducted in Hainan Island, utilizing spectral bands, vegetation indices, tasseled cap components derived from Landsat-8 imagery, backscattering coefficients from ALOS-2 synthetic aperture radar, topographic features, and the forest canopy height as the explanatory variables. A total of 195 forest aboveground biomass (AGB) samples were collected for modeling and assessing the predictive accuracy. The results demonstrate that, among the tested models, including GRFEBK, RF, support vector machine (SVM), k-nearest neighbor (KNN), geographically weighted regression (GWR), GRF, and EBK, GRFEBK attains the highest R2 (0.78) and the lowest RMSE (36.04 Mg/ha) and RRMSE (22.87%), significantly outperforming the conventional models and using GRF or EBK alone. These results demonstrate that by accounting for local non-stationarity in AGB and correcting prediction biases, GRFEBK achieves significantly higher accuracy than conventional RF and other models. While the results are promising, the computational cost of GRFEBK and its performance under varying geographical conditions warrant further investigation at larger scales to assess its broader applicability. Nevertheless, GRFEBK provides an innovative and more reliable approach for accurate forest AGB estimation with great potential to support global forest resource monitoring.

Funder

The Finance Science and Technology Project of Hainan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3