Validation of Red-Edge Vegetation Indices in Vegetation Classification in Tropical Monsoon Region—A Case Study in Wenchang, Hainan, China

Author:

Liu Miao12,Zhan Yulin2,Li Juan2,Kang Yupeng3,Sun Xiuling4,Gu Xingfa25,Wei Xiangqin2,Wang Chunmei2,Li Lingling12,Gao Hailiang2,Yang Jian2

Affiliation:

1. Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Wenchang 571300, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. College of Civil Engineering, Henan University of Engineering, Zhengzhou 451191, China

4. North China Institute of Aerospace Industry, Langfang 065000, China

5. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

Abstract

Vegetation classification has always been the focus of remote sensing applications, especially for tropical regions with fragmented terrain, cloudy and rainy climates, and dense vegetation. How to effectively classify vegetation in tropical regions by using multi-spectral remote sensing with high resolution and red-edge spectrum needs to be further verified. Based on the experiment in Wenchang, Hainan, China, which is located in the tropical monsoon region, and combined with the ZY-1 02D 2.5 m fused images in January, March, July, and August, this paper discusses whether NDVI and four red-edge vegetation indices (VIs), CIre, NDVIre, MCARI, and TCARI, can promote vegetation classification and reduce the saturation. The results show that the schemes with the highest classification accuracies in all phases are those in which the red-edge VIs are involved, which suggests that the red-edge VIs can effectively contribute to the classification of vegetation. The maximum accuracy of the single phase is 86%, and the combined accuracy of the four phases can be improved to 92%. It has also been found that CIre and NDVIre do not reach saturation as easily as NDVI and MCARI in July and August, and their ability to enhance the separability between different vegetation types is superior to that of TCARI. In general, red-edge VIs can effectively promote vegetation classification in tropical monsoon regions, and red-edge VIs, such as CIre and NDVIre, have an anti-saturation performance, which can slow down the confusion between different vegetation types due to saturation.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3