Advancing Accuracy in Sea Level Estimation with GNSS-R: A Fusion of LSTM-DNN-Based Deep Learning and SNR Residual Sequences

Author:

Hu Yuan1,Tian Aodong1,Yan Qingyun2ORCID,Liu Wei3,Wickert Jens45ORCID,Yuan Xintai45

Affiliation:

1. The College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. The Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

4. The Department of Geodesy, German Research Centre for Geosciences (GFZ), 14473 Potsdam, Germany

5. Institute of Geodesy and Geoinformation Science, Berlin Institute of Technology, 10623 Berlin, Germany

Abstract

The global navigation satellite system reflectometry (GNSS-R) technique has shown promise in retrieving sea levels using signal-to-noise ratio (SNR) data. However, its accuracy and performance are often limited compared to conventional tide gauges, particularly due to constraints in satellite elevation angles. To address these limitations, we propose a methodology integrating Long Short-Term Memory Deep Neural Networks (LSTM-DNN) models, utilising SNR residual sequences as key feature inputs. Our study focuses on the SC02 station, examining elevation angles ranging from 5° to 10°, 5° to 15°, and 5° to 20°. Results reveal notable reductions in root mean square errors (RMSE) of 2.855%, 17.519%, and 15.756%, respectively, showcasing improvements in accuracy across varying elevation angles. Of particular significance is the enhancement in precision observed at higher elevation angles. This underscores the valuable contribution of our approach to nearshore sea level wave height retrieval, promising advancements in the GNSS-R technique.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3