Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion

Author:

Zhang Minghua,Xu Shubo,Song WeiORCID,He Qi,Wei Quanmiao

Abstract

A challenging and attractive task in computer vision is underwater object detection. Although object detection techniques have achieved good performance in general datasets, problems of low visibility and color bias in the complex underwater environment have led to generally poor image quality; besides this, problems with small targets and target aggregation have led to less extractable information, which makes it difficult to achieve satisfactory results. In past research of underwater object detection based on deep learning, most studies have mainly focused on improving detection accuracy by using large networks; the problem of marine underwater lightweight object detection has rarely gotten attention, which has resulted in a large model size and slow detection speed; as such the application of object detection technologies under marine environments needs better real-time and lightweight performance. In view of this, a lightweight underwater object detection method based on the MobileNet v2, You Only Look Once (YOLO) v4 algorithm and attentional feature fusion has been proposed to address this problem, to produce a harmonious balance between accuracy and speediness for target detection in marine environments. In our work, a combination of MobileNet v2 and depth-wise separable convolution is proposed to reduce the number of model parameters and the size of the model. The Modified Attentional Feature Fusion (AFFM) module aims to better fuse semantic and scale-inconsistent features and to improve accuracy. Experiments indicate that the proposed method obtained a mean average precision (mAP) of 81.67% and 92.65% on the PASCAL VOC dataset and the brackish dataset, respectively, and reached a processing speed of 44.22 frame per second (FPS) on the brackish dataset. Moreover, the number of model parameters and the model size were compressed to 16.76% and 19.53% of YOLO v4, respectively, which achieved a good tradeoff between time and accuracy for underwater object detection.

Funder

National Natural Science Foundation of China

Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources Ministry of Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3