Retreating Shorelines as an Emerging Threat to Adélie Penguins on Inexpressible Island

Author:

Chen XintongORCID,Chen JiquanORCID,Cheng XiaoORCID,Zhu Lizhong,Li Bing,Li Xianglan

Abstract

Long-term observation of penguin abundance and distribution may warn of changes in the Antarctic marine ecosystem and provide support for penguin conservation. We conducted an unmanned aerial vehicle (UAV) survey of the Adélie penguin (Pygoscelis adeliae) colony on Inexpressible Island and obtained aerial images with a resolution of 0.07 m in 2018. We estimated penguin abundance and identified the spatial extent of the penguin colony. A total of 24,497 breeding pairs were found on Inexpressible Island within a colony area of 57,507 m2. Based on historical images, the colony area expanded by 30,613 m2 and abundance increased by 4063 pairs between 1983 and 2012. Between 2012 and 2018 penguin abundance further increased by 3314 pairs, although the colony area decreased by 1903 m2. In general, Adélie penguins bred on Inexpressible Island at an elevation <20 m, and >55% of penguins had territories within 150 m of the shoreline. This suggests that penguins prefer to breed in areas with a low elevation and close to the shoreline. We observed a retreat of the shoreline on Inexpressible Island between 1983 and 2018, especially along the northern coast, which may have played a key role in the expansion of the penguin colony on the northern coast. In sum, it appears that retreating shorelines reshaped penguin distribution on the island and may be an emerging risk factor for penguins. These results highlight the importance of remote sensing techniques for monitoring changes in the Antarctic marine ecosystem and providing reliable data for Antarctic penguin conservation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3