Crop Water Stress Index as a Proxy of Phenotyping Maize Performance under Combined Water and Salt Stress

Author:

Gu Shujie,Liao Qi,Gao Shaoyu,Kang Shaozhong,Du Taisheng,Ding RishengORCID

Abstract

The crop water stress index (CWSI), based on canopy temperature (Tc), has been widely used in evaluating plant water status and planning irrigation scheduling, but whether CWSI can diagnose the stress status of crops and predict the physiological traits and growth under combined water and salt stress remains to be further studied. Here, a model of CWSI was established based on the continuous measurements of Tc for two maize genotypes (ZD958 and XY335) under two water and salt conditions, combined with growth stage-specific non-water-stressed baselines (NWSB). The relationships between physiology, growth, and yield of maize with CWSI were analyzed. There were significant differences in NWSB between the two maize genotypes at the same and different growth stages; thus, growth stage-specific NWSBs were used. The difference in NWSB was due to the difference and change in effective leaf width. CWSI was closely related to leaf water potential, stomatal conductance, and net photosynthetic rate under different water and salt stress, and also explained the variations in leaf area index, biomass, water use, and yield. Collectively, CWSI can be used as a proxy indicator of high-throughput phenotyping maize performance under combined water and salt stress, which will be valuable for predicting yield and improving water use efficiency.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3