Classification of Building Types in Germany: A Data-Driven Modeling Approach

Author:

Bandam AbhilashORCID,Busari Eedris,Syranidou ChloiORCID,Linssen Jochen,Stolten Detlef

Abstract

Details on building levels play an essential part in a number of real-world application models. Energy systems, telecommunications, disaster management, the internet-of-things, health care, and marketing are a few of the many applications that require building information. The essential variables that most of these models require are building type, house type, area of living space, and number of residents. In order to acquire some of this information, this paper introduces a methodology and generates corresponding data. The study was conducted for specific applications in energy system modeling. Nonetheless, these data can also be used in other applications. Building locations and some of their details are openly available in the form of map data from OpenStreetMap (OSM). However, data regarding building types (i.e., residential, industrial, office, single-family house, multi-family house, etc.) are only partially available in the OSM dataset. Therefore, a machine learning classification algorithm for predicting the building types on the basis of the OSM buildings’ data was introduced. Although the OSM dataset is the fundamental and most crucial one used for modeling, the machine learning algorithm’s training was performed on a dataset that was prepared by combining several features from three other datasets. The generated dataset consists of approximately 29 million buildings, of which about 19 million are residential, with 72% being single-family houses and the rest multi-family ones that include two-family houses and apartment buildings. Furthermore, the results were validated through a comparison with publicly available statistical data. The comparison of the resulting data with official statistics reveals that there is a percentage error of 3.64% for residential buildings, 13.14% for single-family houses, and −15.38% for multi-family houses classification. Nevertheless, by incorporating the building types, this dataset is able to complement existing building information in studies in which building type information is crucial.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BF-SAM: enhancing SAM through multi-modal fusion for fine-grained building function identification;International Journal of Geographical Information Science;2024-09-05

2. Leveraging machine learning to generate a unified and complete building height dataset for Germany;Energy and AI;2024-09

3. A Review of Big Data and Machine Learning Operations in Official Statistics: MLOps and Feature Store Adoption;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

4. Predicting building characteristics at urban scale using graph neural networks and street-level context;Computers, Environment and Urban Systems;2024-07

5. A Holistic Framework for Building Type Classification Using CNN and Random Forest;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3