Abstract
Pure TiO2 and barium (0.5 wt%) doped TiO2 (Ba/TiO2) nanostructures have been synthesized via facile microwave irradiation method. The pure anatase phase of synthesized photoactive material was confirmed by X-ray diffraction. Ba doping in the TiO2 host structure influenced the optical band gap as confirmed by UV-visible spectroscopy. The optical band gap increased from 3.21 eV for the TiO2 to 3.26 eV for Ba/TiO2. Morphological analysis of synthesized TiO2 and Ba/TiO2 was conducted using scanning electron microscopy. Energy dispersive X-ray spectroscopy confirmed the formation of Ba/TiO2 and no impurities were observed. Electrochemical impedance spectroscopy showed that the charge transfer resistance increased for Ba/TiO2, which reduced dark current creation in a dye-sensitized solar cell. The highest power conversion efficiency (3.24%) was achieved for Ba/TiO2 photoanode compared to 2.1% for a pure TiO2 photoanode-based device.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献