Short-Time Traffic Forecasting in Tourist Service Areas Based on a CNN and GRU Neural Network

Author:

Yang Yan-QunORCID,Lin Jie,Zheng Yu-Bin

Abstract

The continuous development of highway construction projects has prompted the function of service areas to be improved day by day. A traditional service area gradually transforms from a single traffic service mode to a complex traffic service mode. The continuous enrichment and perfection of the service area’s function makes the surrounding highway network more attractive, which leads to a sudden increase in highway traffic volume in a short period of time. In order to better improve the service level of a tourist service area by predicting the short-term traffic volume of the toll station around the tourist service area, this paper proposes a model combining a convolutional neural network and a gated recurrent unit (CNN plus GRU) to solve the problem of short-term traffic volume prediction. The data from 17 toll stations of the Yu’an Expressway in Guizhou Province were selected for the experiment to test the prediction effect of the CNN plus GRU-based model. The experimental results show that the prediction accuracy, the MAE and RMSE, are 1.8101 and 2.7021, respectively, for the toll stations with lower traffic volumes, and 3.820 and 5.172, respectively, for the toll stations with higher traffic volumes. Compared with a single model, the model’s prediction accuracy is improved, to different degrees. Therefore, the use of a convolutional neural network operation is better when the total traffic volume is low, considering the algorithm’s time and error. When using the combined convolutional neural network and gated recurrent unit model and when the total traffic volume is high, the algorithm error is significantly reduced and the prediction results are better.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Discussion about building tourism—based service areas in Qinghai province;Han;Qinghai Transp. Sci. Technol.,2018

2. A Study on the Design of Tourist-oriented Service Areas on Highways;Zhang,2017

3. Analysis on the Planning and Design of Tourism Service Area of Mountainous Expressway;Chang;Technol. Highw. Transp.,2021

4. Integrated Planning of Tourism Investment and Transportation Network Design

5. Research on construction technology of visual environment for highway tourism service area;Wang;Technol. Highw. Transp.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3