Potential of Fluid Dynamic Bowtie Filter for Dose Reduction and Image Quality Improvement of Cone-Beam CT

Author:

Lin Xin,Zhuo WeihaiORCID,Liu HaikuanORCID,Xie Tianwu

Abstract

Reducing radiation dose to patients without compromising imaging quality has been an important issue in the medical use of X-ray computed tomography (CT). In this study, based on the conceptual designs of different types of attenuation filters, the radiation doses to patients who undergo a typical head, thorax and abdomen scan using a cone-beam CT with different scanning protocols were simulated using the Monte Carlo method, and the isotropy of the noise power spectrum (NPS) of the reconstructed images was also calculated. Compared to the scanning protocol without attenuation and tube current modulation (TCM), the results showed that the fluid dynamic bowtie filter (FDB) combined with the TCM technique reduced the average organ dose by 70%, 34% and 60% for a typical head, thorax and abdomen scan, respectively, and the NPS isotropy of the reconstructed images was also significantly improved. Compared to most currently used static bowtie filters, the FDB has a higher potential to reduce the dose for patients undergoing CT scans. Further efforts are warranted to make the FDB technique clinically useful.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3