Abstract
Chiari I malformation is characterized by the herniation of cerebellar tonsils below the foramen magnum. It is often accompanied by syringomyelia and neurosurgical management is still controversial. In fact, it is frequent that some symptomatic patients initially undergo bony decompression of the posterior fossa and need in a short time more invasive surgery with higher morbility (e.g., decompression of posterior fossa with dural plastic, with or without tonsillar coarctation) because of unsatisfactory results at MRI controls. This study proposes a machine learning approach (based on SVM classifier), applied to different morphometric indices estimated from sagittal MRI and some information on the patient (i.e., age and symptoms at diagnosis), to recognize patients with higher risk of syringomyelia and clinical deterioration. Our database includes 58 pediatric patients who underwent surgery treatment. A negative outcome at 1 year from the intervention was observed in 38% of them (accuracy of 62%). Our algorithm allows us to increase the accuracy to about 71%, showing it to be a valid support to neurosurgeons in refining the clinical picture.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science