Simulation Analysis of Nanosecond Laser Processing of Titanium Alloy Based on Helical Trepanning

Author:

Liang Yuchen,Feng Guang,Li Xiaogang,Sun Haoran,Xue Wei,Zhang KunpengORCID,Li FengpingORCID

Abstract

Titanium alloy is a type of high-strength material that is difficult to process. In particular, in the aerospace field, the processing accuracy of titanium alloy is high. Recently, laser processing has emerged as a new technology with high processing precision. However, the laser processing methods have obvious differences in processing accuracy and effect. Among them, the laser spiral scanning method plays an important role in welding and drilling, but owing to the complexity of the laser molten pool behavior, there have been limited studies on the material removal mechanism based on laser spiral scanning. To understand the variable process of titanium alloy melt pool in laser spiral scanning processing, a light heat conduction model with mass transfer source term was simulated. The effects of laser power, scanning speed, and scanning path on the morphology were studied. The simulation results show that the unit energy density was the main factor for material removal, and the distribution of the material temperature affected the size of the recast layer. The experimental and simulation results were compared, and good agreement between them was observed. This study can provide a research foundation for the further application of laser spiral scanning technology.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3