Design and Analysis of Dual-Band High-Gain THz Antenna Array for THz Space Applications

Author:

Shihzad Waleed,Ullah SadiqORCID,Ahmad AshfaqORCID,Abbasi Nisar AhmadORCID,Choi Dong-youORCID

Abstract

In this paper, a high-gain THz antenna array is presented. The array uses a polyimide substrate with a thickness of 10 μm, a relative permittivity of 3.5, and an overall volume of 2920 μm × 1055 μm × 10 μm, which can be employed for THz band space communication and other interesting applications. The dual-band single-element antenna is designed in four steps, while operating at 0.714 and 0.7412 THz with −10 dB bandwidths of 4.71 and 3.13 GHz, providing gain of 5.14 and 5 dB, respectively. In order to achieve a high gain, multiple order antenna arrays are designed such as the 2 × 1 antenna array and the 4 × 1 antenna array, named type B and C, respectively. The gain and directivity of the proposed type C THz antenna array are 12.5 and 11.23 dB, and 12.532 and 11.625 dBi at 0.714 and 0.7412 THz, with 99.76 and 96.6% radiation efficiency, respectively. For justification purposes, the simulations of the type B antenna are carried out in two simulators such as the CST microwave studio (CSTMWS) and the advance design system (ADS), and the performance of the type B antenna is compared with an equivalent circuit model on the bases of return loss, resulting in strong agreement. Furthermore, the parametric analysis for the type C antenna is done on the basis of separation among the radiating elements in the range 513 to 553 μm. A 64 × 1 antenna array is used to achieve possible gains of 23.8 and 24.1 dB, and directivity of 24.2 and 24.5 dBi with good efficiencies of about 91.66 and 90.35% at 0.7085 and 0.75225 THz, respectively, while the 128 × 1 antenna array provides a gain of 26.8 and 27.2 dB, and directivity of 27.2 and 27.7 dBi with good efficiency of 91.66 and 90.35% at 0.7085 and 0.75225 THz, respectively. All the results achieved in this manuscript ensure the proposed design is a feasible candidate for high-speed and free space wireless communication systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Evolution of Satellite Communication Antennas on Mobile Ground Terminals

2. Inverted K-shaped antenna with partial ground for THz applications

3. Technical and Operational Characteristics and Applications of the Point-to-Point Fixed Service Applications Operating in the Frequency Band 275–450 GHz,2017

4. Protection of the Radio Astronomy Services from Transmitters Operating in Adjacent Bands,2003

5. Technology Trends of Active Services in the Frequency Range 275–3000 ghz,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3