Correction of Point Load Strength on Irregular Carbonaceous Slate in the Luang Prabang Suture Zone and the Prediction of Uniaxial Compressive Strength

Author:

Wang Jianjun,Yang YangORCID,Tan Zhongsheng,Li Dongfeng,Liu Qianli

Abstract

Uniaxial compressive strength (UCS) testing requires high-quality core samples, which is a difficult task for weak, highly fractured, thinly bedded, foliated, and weathered rocks. In addition, it is time-consuming and expensive. Because of the good relationship between rock point load strength (PLS) and UCS, the PLS could be used to estimate rock UCS quickly. The lump structure and layer structure of carbonaceous slate are revealed in the tunnels of the China–Laos Railway in the Laos Luang Prabang Suture Zone as one of the important factors leading to tunnel squeezing deformation and support structures. To reveal the relationship between the PLS and UCS of carbonaceous slate in the Luang Prabang Suture Zone, PLS tests and UCS tests of lump-structure carbonaceous slate (lamina plane inconspicuous) and layer-structure carbonaceous slate (lamina plane conspicuous) were performed. Results show that the Is(50) of lump-structure carbonaceous slate ranged from 0.06 MPa to 0.30 Mpa, the Is(50) of layer-structure carbonaceous slates which were loaded perpendicular to the lamina plane ranged from 0.64 MPa to 1.25 MPa, the Is(50) of layer-structure carbonaceous slates which were loaded parallel to the lamina plane ranged from 0.49 MPa to 0.71 MPa, and the correction power index m ranged from 0.42 to 0.51 with an average value of 0.47. Four correlation expressions of carbonaceous slate relationships between PLS and UCS were fitted by zero-intercept linear expression, nonzero intercept linear expression, power expression, and logarithmic expression, and the calculation results were compared with results calculated by the International Society of Rock Mechanics (ISRM) correlation equation. It is concluded that the correlation equation between UCS and PLS recommended by ISRM specifications easily causes soft rock strength overestimation, which affects the correct evaluation of the surrounding rock property and the structural design safety of tunnels and underground projects. The zero-intercept linear equation UCS = 18.45Is(50) has better goodness of fit and higher accuracy in predicting the UCS of the carbonaceous slate in the Luang Prabang Suture Zone.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3