Post-Buckling Behaviour of Steel Structures with Different Types of Imperfections

Author:

Rzeszut KatarzynaORCID

Abstract

In this paper, the stability of steel members with a complex initial geometrical imperfection pattern are analysed. This issue is extremely important in the case of slender structures, characterised by multiple close critical loads and modal interactions, which can lead to unstable post-critical paths and imperfection sensitivity. Despite the fact that the loss of stability, as a result of complex geometrical imperfections, is a very common mechanism for the destruction of slender steel structures, there is still no unambiguous and adequate research in the literature and in scientific research taking into account multimodal buckling. Therefore, in this study, special attention was focused on the analysis of the equilibrium path of the structure in the pre- and post-buckling range. This was studied by introducing a model of a structure composed of four rigid bars connected by elastic nodes. For this model, as well as for the structure with and without initial geometrical imperfections, a set of nonlinear algebraic equations of equilibrium was developed. A complex pattern of imperfections was taken into account using a linear superposition of buckling modes obtained from a linear eigenvalue problem. In order to investigate the nature of bifurcation points, the concept of minimum of potential energy was adopted. By means of numerous examples, the influence of imperfections on the structural behaviour was discussed. It was found that, for special imperfection patterns, an increase in the amplitude of initial geometrical imperfection can result in an increase in the value of the critical load defining the bifurcation point. In these cases, initial geometrical imperfections can play a positive role, resulting in stable post-buckling behaviour. This phenomenon corresponds with the so-called “modal nudging” which aims to improve the buckling response of slender elastic structures by introducing a small disturbance in the primary geometry of the structure, which results in equilibrium paths of greater load-carrying capacity. Among other observations, a snap-through phenomenon caused by transition from the local to the global minimum of potential energy was also noted. The observed snap-through was caused by the specific configuration of initial geometrical imperfections, which in this case played quite a dangerous role. It should be emphasised that the proposed model structure allows for a full description of the post-critical behaviour and a trace of the influence of complex imperfection configurations in a simple and clear manner.

Funder

Poznań University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Theory of Elastic Stability;Timoshenko,1961

2. Thin-Walled Elastic Rods;Vlasov,1963

3. Modeling of initial geometrical imperfections in stability analysis of thin-walled structures;Rzeszut;J. Theor. Appl. Mechanics.,2009

4. Effect of imperfections on numerical simulation of instability behaviour of cold-formed steel members

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3