Structural, Magnetic, and Magnetocaloric Studies of Ball-Milled Fe100−xTx (T = Ni and Mn) Alloy

Author:

Sharma Mohit K.,Kumar Akshay,Kumari Kavita,Park Su-jeong,Yadav Naveen,Huh Seok-Hwan,Koo Bon-Heun

Abstract

Iron-transition metal-based binary and ternary alloys have attracted great attention due to their relevant mechanical, electrical, and magnetic properties. In this paper, we systematically investigate the structural, magnetic, and magnetocaloric behavior of as-milled Fe65T35 (T = Ni and Mn) alloy. The polycrystalline alloys were produced by the planetary ball milling, using a powder-to-ball ratio of 1:3. A structural study reveals that both Fe65Ni35 and Fe65Mn35 compounds have stabilized in α and γ mixed phase within the cubic crystal structure. The alloyed compounds are further characterized by high-resolution field emission scanning electron microscopy (HR-FESEM), which confirms the mixing of both metals in the alloying process. Temperature-dependent magnetic studies do not show any blocking in zero-field-cooled and field-cooled results; however, the field-dependent magnetization study demonstrates the ferromagnetic nature with small hysteresis in both compounds. Both compounds show a significant magnetocaloric effect over a wide temperature range around room temperature. Fe65Ni35 exhibit a slightly higher value in comparison to Fe65Mn35. In both the alloys, magnetic entropy change follows the power law behavior against the external magnetic field, and the value of exponent ‘m’ explains the presence of magnetic correlation. Our investigation in this study communicates that the phase control or coexistence of both phases may be efficacious in obtaining the desirable characteristic of magnetic and magnetocaloric demeanors in such a binary Fe-T alloy.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3