Intelligent Timber Damage Monitoring Using PZT-Enabled Active Sensing and Intrinsic Multiscale Entropy Analysis

Author:

Guo Shuai,Shen Tong,Li Li,Hu Huangxing,Zhang Jicheng,Lu Zhiwen

Abstract

Timber has been commonly used in the field of civil engineering, and the health condition of timber is of great significance for the whole structure in practical scenarios. However, due to mechanical load and environmental impact, timber-based constructions are vulnerable to termite attack, microbial corrosion and fractures within their service lives. Thus, the damage monitoring of timber structures is very challenging under real situations. This paper presents an intelligent timber damage monitoring approach using Lead Zirconate Titanate (PZT)-enabled active sensing and intrinsic multiscale entropy analysis. The proposed approach adopts PZT-enabled active sensing to collect the signals depicting dynamic characteristics of the timber structure. The proposed intrinsic multiscale entropy analysis utilizes variational mode decomposition (VMD) to deal with the collected response signals. Decomposition of the response signals into a set of band-limited intrinsic mode functions (BLIMFs) denoting nonlinear and nonstationary characteristics. Then multiscale sample entropy (MSE) is employed to extract quantitative features, which are adopted as health condition indicators of timber structures. Finally, the convolutional neural network (CNN) fulfills the intelligent timber damage monitoring by using the quantitative features as the effective input. The research findings reveal the efficacy and superiority of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation Innovation Group Program of Hubei Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3