Comparative Study for Patch-Level and Pixel-Level Segmentation of Deep Learning Methods on Transparent Images of Environmental Microorganisms: From Convolutional Neural Networks to Visual Transformers

Author:

Yang Hechen,Zhao XinORCID,Jiang Tao,Zhang Jinghua,Zhao Peng,Chen Ao,Grzegorzek Marcin,Qi Shouliang,Teng Yueyang,Li Chen

Abstract

Currently, the field of transparent image analysis has gradually become a hot topic. However, traditional analysis methods are accompanied by large amounts of carbon emissions, and consumes significant manpower and material resources. The continuous development of computer vision enables the use of computers to analyze images. However, the low contrast between the foreground and background of transparent images makes their segmentation difficult for computers. To address this problem, we first analyzed them with pixel patches, and then classified the patches as foreground and background. Finally, the segmentation of the transparent images was completed through the reconstruction of pixel patches. To understand the performance of different deep learning networks in transparent image segmentation, we conducted a series of comparative experiments using patch-level and pixel-level methods. In two sets of experiments, we compared the segmentation performance of four convolutional neural network (CNN) models and a visual transformer (ViT) model on the transparent environmental microorganism dataset fifth version. The results demonstrated that U-Net++ had the highest accuracy rate of 95.32% in the pixel-level segmentation experiment followed by ViT with an accuracy rate of 95.31%. However, ResNet50 had the highest accuracy rate of 90.00% and ViT had the lowest accuracy of 89.25% in the patch-level segmentation experiments. Hence, we concluded that ViT performed the lowest in patch-level segmentation experiments, but outperformed most CNNs in pixel-level segmentation. Further, we combined patch-level and pixel-level segmentation results to reduce the loss of segmentation details in the EM images. This conclusion was also verified by the environmental microorganism dataset sixth version dataset (EMDS-6).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3