An Interface-Corrected Diffuse Interface Model for Incompressible Multiphase Flows with Large Density Ratios

Author:

Guo Yuhao,Wang Yan,Hao Qiqi,Wang Tongguang

Abstract

An interface-corrected diffuse interface method is presented in this work for the simulation of incompressible multiphase flows with large density ratios. In this method, an interface correction term together with a mass correction term is introduced into the diffuse-interface Cahn–Hilliard model to maintain both mass conservation and interface shapes between binary fluids simultaneously. The interface correction term is obtained by connecting the signed distance functions in the Hamilton–Jacobian equation with the order parameter of the Cahn–Hilliard model. In addition, an improved multiphase lattice Boltzmann flux solver is introduced, in which the fluxes are obtained by considering the contributions of the particle distribution functions before and after the streaming process through a local switch function. The proposed method is validated by simulating multiphase flows, such as the Laplace law, the evolution of a square bubble, the merging of two bubbles, Rayleigh–Taylor instability, and a droplet impacting on a film with a density ratio of 1000. Numerical results show that the presented method can not only reduce the interface diffusion but also has good control over the interface thickness and mass conservation. The improved numerical method has great potential for use in practical applications involving multiphase flows.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Mechanics and Control of Mechanical Structures

Key laboratory of Computational Aerodynamics, AVIC Aerodynamics Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3