A Wheels-on-Knees Quadruped Assistive Robot to Carry Loads

Author:

Li Wujing,Wei Linchao,Zhang XiaochenORCID

Abstract

This work introduces a high-performance, quadruped-assistive-robot expandable platform with wheel–leg mode transformation functions. The robot platform is designed for transporting goods in residential areas such as apartments, private houses, and office buildings. It is capable to move fast on flat ground on wheels or use legs to move in other places, especially for moving on and off residential staircases and wheelchair accessible ramps. To achieve higher load capacity and combine the knee joint with the drive wheel, we designed a compact torso–leg structure, driving the lower link through a ligament-like structure. Because the distance between the wheel and the torso is short, the mass centroid drops and the force arm caused by the load is reduced; the designed sample robot is capable to transport uniform mass loads up to 15 kg while keeping it affordable. The proposed ligament-like transmission structure also ensures the torso’s even gesture and load capability in its walking mode. Gait motion planning, finite element analysis, and task-oriented simulation have been conducted to prove its applicability and feasibility when given a heavy load to transport across flat and staired scenarios.

Funder

the Humanity and Social Science Youth Foundation of the Ministry of Education of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent;Sensors;2024-06-06

2. Semi-autonomous Camera Positioning System for Discussion Panel Application on Quadruped Robot;Lecture Notes in Networks and Systems;2024

3. Autonomous Stair Ascending and Descending by Quadruped Wheelchairs;2023 20th International Conference on Ubiquitous Robots (UR);2023-06-25

4. HELFER—Automatic Load-Carrying Robot;Advances in Intelligent Systems and Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3