Principal Subspace of Dynamic Functional Connectivity for Diagnosis of Autism Spectrum Disorder

Author:

Al-Hiyali Mohammed IsamORCID,Yahya NorashikinORCID,Faye IbrahimaORCID,Al-Quraishi Maged S.ORCID,Al-Ezzi AbdulhakimORCID

Abstract

The study of functional connectivity (FC) of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) has gained traction for uncovering FC patterns related to autism spectrum disorder (ASD). It is believed that the neurodynamic components of neuroimaging data enhance the measurement of the FC of brain nodes. Hence, methods based on linear correlations of rs-fMRI may not accurately represent the FC patterns of brain nodes in ASD patients. In this study, we proposed a new biomarker for ASD detection based on wavelet coherence and singular value decomposition. In essence, the proposed method provides a novel feature-vector based on extraction of the principal component of the neuronal dynamic FC patterns of rs-fMRI BOLD signals. The method, known as principal wavelet coherence (PWC), is implemented by applying singular value decomposition (SVD) on wavelet coherence (WC) and extracting the first principal component. ASD biomarkers are selected by analyzing the relationship between ASD severity scores and the amplitude of wavelet coherence fluctuation (WCF). The experimental rs-fMRI dataset is obtained from the publicly available Autism Brain Image Data Exchange (ABIDE), and includes 505 ASD patients and 530 normal control subjects. The data are randomly divided into 90% for training and cross-validation and the remaining 10% unseen data used for testing the performance of the trained network. With 95.2% accuracy on the ABIDE database, our ASD classification technique has better performance than previous methods. The results of this study illustrate the potential of PWC in representing FC dynamics between brain nodes and opens up possibilities for its clinical application in diagnosis of other neuropsychiatric disorders.

Funder

Yayasan Universiti Teknologi PETRONAS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3