Silk Bionanocomposites for Organic Dye Absorption and Degradation

Author:

Belda Marín CristinaORCID,Egles ChristopheORCID,Landoulsi JessemORCID,Guénin ErwannORCID

Abstract

Organic dyes are extensively used in the textile, paper and paint industries, among others. However, the lack of efficient treatment of disposals leads to the release of these toxic molecules into the environment, which has an enormous impact on living organisms. Dye absorption is the most common approach used to tackle this problem. However, the ideal solution should include dye degradation and absorbent regeneration, reducing the environmental impact of the procedure. Dye degradation can be achieved by catalysis. Recently, silk fibroin (SF) has been shown to have incredible absorbent properties. Herein, we characterized the capacity of SF hydrogels to absorb methylene blue (MB), an extensively used cationic organic dye. Moreover, the effect of a pretreatment of the SF hydrogel at different pH and ionic environments is also studied. Interestingly, opposite behaviors are observed when absorbing MB or brilliant blue (an anionic dye), suggesting an electrostatic-based interaction. Furthermore, the regeneration of a MB-saturated SF hydrogel by immersion in acidic pH and its further reuse were evaluated. Finally, the SF hydrogel was coupled with a gold nanoparticle catalyst, which resulted in a material able to absorb and catalyze the MB reduction by sodium borohydride in situ, leading to dye degradation. Overall, this work presents a biodegradable reusable material able to absorb and reduce MB in aqueous media.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3