Superpixel Image Classification with Graph Convolutional Neural Networks Based on Learnable Positional Embedding

Author:

Bae Ji-HunORCID,Yu Gwang-Hyun,Lee Ju-Hwan,Vu Dang ThanhORCID,Anh Le HoangORCID,Kim Hyoung-Gook,Kim Jin-Young

Abstract

Graph convolutional neural networks (GCNNs) have been successfully applied to a wide range of problems, including low-dimensional Euclidean structural domains representing images, videos, and speech and high-dimensional non-Euclidean domains, such as social networks and chemical molecular structures. However, in computer vision, the existing GCNNs are not provided with positional information to distinguish between graphs of new structures; therefore, the performance of the image classification domain represented by arbitrary graphs is significantly poor. In this work, we introduce how to initialize the positional information through a random walk algorithm and continuously learn the additional position-embedded information of various graph structures represented over the superpixel images we choose for efficiency. We call this method the graph convolutional network with learnable positional embedding applied on images (IMGCN-LPE). We apply IMGCN-LPE to three graph convolutional models (the Chebyshev graph convolutional network, graph convolutional network, and graph attention network) to validate performance on various benchmark image datasets. As a result, although not as impressive as convolutional neural networks, the proposed method outperforms various other conventional convolutional methods and demonstrates its effectiveness among the same tasks in the field of GCNNs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Deep residual learning for image recognition;He;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

2. ImageNet classification with deep convolutional neural networks

3. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

4. Convolutional neural networks on irregular domains based on approximate vertex-domain translations;Pasdeloup;arXiv,2017

5. Semi-supervised classification with graph convolutional networks;Kipf;arXiv,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3