Electroanalytical Platform for Rapid E. coli O157:H7 Detection in Water Samples

Author:

Mishra Kundan Kumar1,Dhamu Vikram Narayanan2ORCID,Jophy Chesna1,Muthukumar Sriram2,Prasad Shalini12ORCID

Affiliation:

1. Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA

2. EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA

Abstract

There is a pressing need to enhance early detection methods of E. coli O157:H7 to mitigate the occurrence and consequences of pathogenic contamination and associated outbreaks. This study highlights the efficacy of a portable electrochemical sensing platform that operates without faradaic processes towards detecting and quantifying E. coli O157:H7. It is specifically tailored for quick identification in potable water. The assay processing time is approximately 5 min, addressing the need for swift and efficient pathogen detection. The sensing platform was constructed utilizing specific, monoclonal E. coli antibodies, based on single-capture, non-faradaic, electrochemical immunoassay principles. The E. coli sensor assay underwent testing over a wide concentration range, spanning from 10 to 105 CFU/mL, and a limit of detection (LoD) of 1 CFU/mL was demonstrated. Significantly, the sensor’s performance remained consistent across studies, with both inter- and intra-study coefficients of variation consistently below 20%. To evaluate real-world feasibility, a comparative examination was performed between laboratory-based benchtop data and data obtained from the portable device. The proposed sensing platform exhibited remarkable sensitivity and selectivity, enabling the detection of minimal E. coli concentrations in potable water. This successful advancement positions it as a promising solution for prompt on-site detection, characterized by its portability and user-friendly operation. This study presents electrochemical-based sensors as significant contributors to ensuring food safety and public health. They play a crucial role in preventing the occurrence of epidemics and enhancing the supervision of water quality.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3