A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing

Author:

Huang Jie1,Petrescu Florian Ion Tiberiu2ORCID,Li Bing1,Wang Likui1,Zhu Haiyan1,Li Ying1

Affiliation:

1. The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

2. Department of Mechanisms and Robots Theory, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania

Abstract

The ratiometric detection method has a strong attraction for photoelectrochemical bioanalysis due to its high reliability and real-time calibration. However, its implementation typically depends on the spatial resolution of equipment and the pairing of wavelength/potential with photoactive materials. In this paper, a novel ratiometric photoelectrochemical biosensor based on front and back illumination was prepared for the detection of glutathione (GSH). Unlike traditional ratio methods, this ratiometric biosensor does not require voltage and wavelength modulation, thereby avoiding potential crosstalk caused by voltage and wavelength modulation. Additionally, the formation of a heterojunction between mTiO2 and Ag2S is conducive to enhancing light absorption and promoting charge separation, thereby boosting the photocurrent signal. Apart from forming a heterojunction with TiO2, Ag2S also shows a specific affinity towards GSH, thus enhancing the selectivity of the mTiO2/Ag2S ratiometric photoelectrochemical biosensor. The results demonstrate that the ratiometric photoelectrochemical biosensor exhibits a good detection range and a low detection limit for GSH, while also possessing significant interference elimination capability. The GSH detection range is 0.01–10 mmol L−1 with a detection limit of 6.39 × 10−3 mmol·L−1. The relative standard deviation of 20 repeated detections is 0.664%. Impressively, the proposed novel ratiometric PEC biosensor demonstrates enviable universality, providing new insights for the design and construction of PEC ratiometric sensing platforms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3