Modelling and Numerical Simulation Approaches to the Stage–Discharge Relationships of the Lansheng Bridge

Author:

Chen Yen-Chang1,Yang Han-Chung2ORCID,Liao Yi-Jiun1,Chen Yen-Tzu1

Affiliation:

1. Department of Civil Engineering, National Taipei University of Technology, Taipei 106344, Taiwan

2. Department of Marine Leisure Management, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan

Abstract

In recent years, extreme rainfall events with short delays and heavy rainfall have often occurred due to severe climate change. In 2015, Typhoon Soudelor caused a short-delayed heavy rainfall event in Nanshih River, which caused damage to a section of the Lansheng Bridge discharge station. The section was relocated upstream to rebuild the discharge station in 2019. However, the new discharge station cannot measure high flow due to the bridge structure. The flow observation range of Lansheng Bridge is therefore limited to normal flow, making it impossible to accurately estimate the flow during high-water stages. The purpose of this study is to use the past flow data of Nanshih River to estimate the flow rate under different return periods using frequency analysis. We used a Digital Elevation Model (DEM) to map the river’s topography, and used the 3D hydraulic calculations of the FLOW-3D model to estimate the water stage and discharge of the Lansheng Bridge. We then verified the accuracy of the model with the measured flow and water stage, and finally used the water stage and discharge data obtained from numerical simulation to construct the stage–discharge rating curve of the Lansheng Bridge. In addition to preventing flood disasters, this study approach can provide reliable data for use in water conservation. It may also be utilized to overcome the problem of measuring and estimating high flow during typhoon floods.

Funder

National Kaohsiung University of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3