Acceleration of Aerobic Granulation in Sidestream Treatment with Exogenous Autoinducer

Author:

Jang Eunae1,Min Kyung Jin2,Lee Eunyoung1ORCID,Choi Hanna3,Park Ki Young1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

2. Department of Tech Center for Research Facilities, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

3. Taeyoung E&C, 111 Yeouigongwon-ro, Yeongdeungpo-gu, Seoul 07241, Republic of Korea

Abstract

Aerobic granular sludge (AGS) is a special type of biofilm formed by the self-aggregation of microorganisms and extracellular polymers and is considered a promising technology for wastewater treatment. However, new strategies are still being proposed as to how to improve the extracellular polymeric substances (EPS) production that influences the formation of AGS. Recently, the acceleration of aerobic granulation using autoinducers such as N-acyl-homoserine lactone (AHL)-mediated quorum sensing has been reported. However, it is not yet fully understood due to knowledge gaps on the correlations depending on the type of AHL used. In this study, to evaluate the effects of various AHL on the AGS formation of activated sludge, the secretion of extracellular polymeric substances, biofilm formation, and sludge characteristics were comprehensively investigated. Among the AHL types, tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) in the reactor with C8-HSL added were 18.49 and 74.07 mg/g VSS, respectively, which represented increases of 3.15% and 53.76% compared to the control group. Additionally, C8-HSL increased the relative hydrophobicity and biomass volume by 153% and 218%, respectively. As a result, AHL had a positive effect on biomass content, an increase in sludge size, and an improvement in sludge sedimentation in the early stage of granulation, and C8-HSL was found to be the most suitable for initial granulation among AHL types.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3