Mobile Terrestrial Photogrammetry for Street Tree Mapping and Measurements

Author:

Roberts John,Koeser Andrew,Abd-Elrahman AmrORCID,Wilkinson Benjamin,Hansen Gail,Landry Shawn,Perez Ali

Abstract

Urban forests are often heavily populated by street trees along right-of-ways (ROW), and monitoring efforts can enhance municipal tree management. Terrestrial photogrammetric techniques have been used to measure tree biometry, but have typically used images from various angles around individual trees or forest plots to capture the entire stem while also utilizing local coordinate systems (i.e., non-georeferenced data). We proposed the mobile collection of georeferenced imagery along 100 m sections of urban roadway to create photogrammetric point cloud datasets suitable for measuring stem diameters and attaining positional x and y coordinates of street trees. In a comparison between stationary and mobile photogrammetry, diameter measurements of urban street trees (N = 88) showed a slightly lower error (RMSE = 8.02%) relative to non-mobile stem measurements (RMSE = 10.37%). Tree Y-coordinates throughout urban sites for mobile photogrammetric data showed a lower standard deviation of 1.70 m relative to 2.38 m for a handheld GPS, which was similar for X-coordinates where photogrammetry and handheld GPS coordinates showed standard deviations of 1.59 m and the handheld GPS 2.36 m, respectively—suggesting higher precision for the mobile photogrammetric models. The mobile photogrammetric system used in this study to create georeferenced models for measuring stem diameters and mapping tree positions can also be potentially expanded for more wide-scale applications related to tree inventory and monitoring of roadside infrastructure.

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones

2. Mainstreaming the environmental benefits of street trees

3. A ground-based method of assessing urban forest structure and ecosystem services;Nowak;Arboric. Urban For.,2008

4. The cost of not maintaining the urban forest;Hauer;Arborist News.,2015

5. The Costs of Maintaining and Not Maintaining the Urban Forest: A Review of the Urban Forestry and Arboriculture Literature;Vogt;Arboric. Urban For.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3