Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-Historical Eruptions of the Bezymianny Volcano, Kamchatka

Author:

Ridolfi Filippo1ORCID,Almeev Renat R.1ORCID,Ozerov Alexey Yu2,Holtz Francois1

Affiliation:

1. Institut für Mineralogie, Faculty of Natural Sciences, Leibniz University Hannover, Callinstrasse 3, 30167 Hannover, Germany

2. Institute of Volcanology and Seismology, Piip Boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia

Abstract

This article reports a protocol on the application of Amp-TB2 (single-amphibole thermobarometry) based on detailed electron-microprobe analyses performed on homogeneous natural standards and synthetic glasses, and amphibole crystals (mostly phenocrysts) of volcanic products erupted by the Bezymianny volcano during its activity through time. The application of this protocol is facilitated by a new version of the model (Amp-TB2.1.xlsx) including an equation to identify heterogeneous domains (disequilibrium; not suitable for thermobarometric constraints) and homogenous (equilibrium) zones within amphibole crystals, which can be used to quantify the physicochemical parameters (i.e., pressure, P; temperature, T; volatile content in the melt, H2Omelt; oxygen fugacity, fO2) of “steady-state” magmatic crystallization. Application examples of the protocol, showing detailed core–rim microprobe data and physicochemical parameter variations in representative amphibole phenocrysts of the Bezymianny are also reported. The depth (and P) estimated by Amp-TB2.1 for this volcano are compared to seismic tomography results. Amp-TB2.1 results mainly show (1) that the Bezymianny is characterized by a very dynamic feeding system where the magma is stored at shallow crustal levels before recent activity periods characterized by climatic events and (2) that the pre-eruptive depth of magma storage generally increases with the age of the investigated products.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3