Affiliation:
1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Chifeng Hongling Nonferrous Mining Co., Ltd. (Shandong Gold Group), Chifeng 025420, China
Abstract
Metal migration and precipitation in hydrothermal fluids are important topics in economic geology. The Hongling polymetallic deposit comprises one of the most important parts of the Huanggangliang–Ganzhuermiao polymetallic metallogenic belt, which is in eastern Inner Mongolia. Except for lead–zinc skarn, minor cassiterite in the skarn and disseminated W–Sn mineralization in granitic rocks have also been found. The dominant Sn–W mineralization is in the northern part of the deposit, occurring as disseminated wolframite and cassiterite in aplite hosted in Mesozoic granite porphyry. The aplite together with pegmatite K-feldspar–quartz comprises vein dikes hosted in the granite porphyry, providing evidence for the transition from melt to fluid. The veins, dikes, and Sn–W mineralization in the aplite provide an opportunity to investigate fluid exsolution and the mechanics of metal precipitation. Based on field observations, the micrographic and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) results of the vein dikes, chronology, and the whole-rock geochemistry of the host rock, together with the fluid inclusion results, this paper discusses the characteristics of the causative magma, the mechanics of fluid exsolution and W–Sn precipitation. Our results show that the causative magma is of highly fractionated A-type granite affinity and has an intrusive age of late Mesozoic (133.3 ± 0.86 Ma). The magmatic evolution during shallow emplacement led to immiscibility between highly volatile, high-silica, and W- and Sn-enriched melts from the parent magma, followed by fluid exsolution from the water-rich melt. The alkaline-rich fluid exsolution led to a change in the redox state of the magma and the chilling of the melt. Fluid boiling occurred soon after the fluid exsolution and was accompanied by the degassing of CO2. The boiling and escape of CO2 from the fluid led to changes in fluid redox and W and Sn precipitation; thus, the W and Sn mineralization are mostly hosted in causative intrusions or peripheral wall rocks, which can be used as indicators for Sn–W exploration in the area.
Funder
Ministry of Science and Technology of the People’s Republic of China
Chifeng Hongling Nonferrous Mining Co., Ltd.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference91 articles.
1. Burnham, C.W. (1979). Geochemistry of Hydrothermal Ore Deposit, Wiley.
2. The role of magmas in the formation of hydrothermal ore deposit;Hedenquist;Nature,1994
3. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton;Cook;Chem. Geol.,2009
4. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado;Carten;Econ. Geol.,1988
5. A Review of shallow, ore-related granites: Textures, volatiles, and ore metals;Candela;J. Petrol.,1997