Effects of Short-Term Acidification on the Adsorption of Dissolved Organic Matter by Soil Minerals and Its Mechanism of Action

Author:

Chen Yueting1,Wang Yue1,Wang Xuqin2,Luan Yaning1ORCID,Dai Wei1

Affiliation:

1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

2. Ordos Branch Station, Inner Mongolia Autonomous Region Environmental Monitoring General Station, Ordos 017000, China

Abstract

In order to investigate the impact of soil acidification on the adsorption of dissolved organic matter by soil minerals and understand its mechanism, this study selected commonly found minerals in soils, namely illite, kaolin, and hematite, as the research objects. Glucose and tannic acid were considered as the representative compounds for studying the adsorption of dissolved organic matter in soils. By analyzing the effects of the three minerals on the adsorption characteristics of glucose and tannic acid after a short-term acidification treatment, this study aimed to explore the underlying mechanism. To achieve this, scanning electron microscopy and a specific surface area analyzer were utilized. The results of this study indicate that the adsorption modes of the minerals studied were unaffected by short-term acidification. Chemisorption, as well as surface and mesopore diffusion, were found to dominate the adsorption process. In terms of adsorption behavior, the minerals exhibited multilayer inhomogeneous adsorption with glucose and kaolin, while tannic acid showed monolayer adsorption with illite and hematite. When exposed to the same acidification conditions, the saturated adsorption of glucose and tannic acid was found to be illite ≥ hematite > kaolin. The kinetic adsorption processes exhibited three stages: fast adsorption, slow adsorption, and adsorption equilibrium. Interestingly, as the intensity of the acidification increased, the saturated adsorption capacity generally followed the trend of S3 (test minerals with pH adjusted to 3 value) > S5 (test minerals with pH adjusted to 5 value) > CK (the control group). The acidification-induced solvation led to an increase in the specific surface area and the number of active adsorption sites on the minerals. Additionally, the protonation reaction triggered a change in the surface charge, which in turn affected the hydrogen bonding, ligand exchange, and charge transfer between the minerals and glucose and tannic acids. These interactions ultimately enhanced the adsorption capacity.

Funder

the Ordos City Science and Technology Cooperation Major Special Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3