Bulk Composition Effects on Vitrification of Mixed Fine Construction–Demolition and Inorganic Solid Waste

Author:

Stabile Paola12ORCID,Abudurahman Ababekri1,Carroll Michael R.1,Paris Eleonora1ORCID

Affiliation:

1. School of Science and Technology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy

2. Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy

Abstract

Re-use of neglected and frequently landfilled wastes, including earthquake-generated rubble, can reduce the environmental impact of such waste materials, avoiding georesource exploitation, and potentially provide a source for new upcycling applications. Here, the fine fraction (<0.125 mm) of different wastes was selected according to chemical composition (mostly silicate/oxide-rich materials), including construction and demolition waste (CDW), commercial glass, ceramic industry waste and incinerator bottom and fly ashes. Mixtures of these materials were used for vitrification experiments conducted at atmospheric pressure, 1200 °C, 8 h duration, preparing ten mixes containing 30 to 70 wt% of different waste materials added to a CDW starting material. X-ray powder diffraction and SEM/electron microprobe analyses show that the amorphous content (glass) varies from a maximum of 100 wt.% in products made of CDW with 70 wt.% added ceramic materials (e.g., roof tile) to a minimum of ~53 wt.% amorphous material when CDW was mixed with 30 wt.% brick powder. Mixtures of other waste materials (commercial glass, bottom/fly ash, ceramic waste) produced variable amounts of amorphous component, interpreted in terms of thermal minima in the CaO-Al2O3-SiO2 system. Lack crystallinity and characteristic microstructures of experimental products suggest that vitrification is a promising choice for rendering inert chemically complex waste materials like CDW for possible upcycling applications.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3