Age and Tectonic Setting of Layered Lead–Zinc Ore Bodies in the Xiaohongshilazi Deposit: Constraints from Geochronology and Geochemistry of the Volcanic Rocks in Central Jilin Province, NE China

Author:

Yang Qun1,Shang Qingqing1,Ren Yunsheng2,Yang Zhongjie3

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. School of Earth Science, Institute of Disaster Prevention, Langfang 065201, China

3. Mudanjiang Natural Resources Comprehensive Survey Center, China Geological Survey, Mudanjiang 157000, China

Abstract

The newly discovered Xiaohongshilazi deposit located in Panshi City, central Jilin Province, NE China, is a medium-scale Pb–Zn–(Ag) deposit. The Pb–Zn–(Ag) orebodies are divided into layered and vein-type orebodies, which have different ore geneses. The layered Pb–Zn orebodies are mainly hosted within and spatially controlled by the volcanic rocks. To constrain the age and tectonic setting of the layered Pb–Zn mineralization, we completed laser-ablation–ICP–MS zircon U–Pb dating and whole-rock major and trace element analyses of the ore-bearing volcanic rocks. The dacite samples were confirmed as belonging to the Daheshen Formation and were the main ore-bearing volcanic rocks for the layered orebodies. They yielded concordia U–Pb ages of 278.1 ± 1.8 Ma and 278.3 ± 1.8 Ma, respectively, indicating that the volcanic rocks from the Daheshen Formation and related layered Pb–Zn mineralization were formed in the early Permian. The andesite and rhyolite located above the layered orebodies yielded concordia U–Pb ages of 225.0 ± 1.1 Ma, 225.3 ± 1.5 Ma, and 224.7 ± 1.2 Ma, respectively; these substances are considered to be of the Sihetun Formation and were first reported in the area. The dacite samples associated with layered Pb–Zn mineralization were high in SiO2 (62.54–65.02 wt.%), enriched in LREEs and LILEs (e.g., Rb, Ba, and K), and showed depletion in HFSEs (e.g., P and Ti). It showed slightly negative Eu anomalies (δEu = 0.60–0.65) and negative Nb anomalies, with Th/Nb (1.12–1.21) and La/Nb (2.8–4.7) ratios, presenting subduction-related arc magma affinity formed in an active continental margin setting. In agreement with previous studies on zircon Hf isotopes (εHf (t) = +0.23~ +10.60) of the volcanic rocks from the Daheshen Formation, we infer that they were derived from the partial melting of the depleted lower crust. In conclusion, mineralization characteristics, geochronological data, geochemical features, and regional tectonic evolution suggest that two Pb–Zn–(Ag) mineralization stages from the Xiaohongshilazi deposit occurred: the layered VMS-type Pb–Zn mineralization associated with the marine volcanic rocks from the early Permian Daheshen Formation, which was induced by the subduction of the Paleo-Asian oceanic plate beneath the northern margin of the North China Craton, and the vein-type Pb–Zn–(Ag) mineralization caused by the subduction of the Paleo-Pacific Plate in the early Jurassic. Considering this, along with the mineralization characteristics of the same-type polymetallic deposits in this region, we propose that the early Permian marine volcanic rocks have great prospecting potential for the VMS-type Pb–Zn polymetallic deposits.

Funder

Natural Science Foundation of Jilin Province

China Postdoctoral Science Foundation

Dynamic Evaluation Project of Gold Resource Potential in Eastern Jilin-Heilongjiang Area

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3