The Delineation of Copper Geochemical Blocks and the Identification of Ore-Related Anomalies Using Singularity Analysis of Stream Sediment Geochemical Data in the Middle and Lower Reaches of the Yangtze River and Its Adjacent Areas, China

Author:

Liu Bin12,Cui Xingtao1,Wang Xueqiu34

Affiliation:

1. Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang 050031, China

2. Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China

3. Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, Langfang 065000, China

4. UNESCO International Centre on Global-Scale Geochemistry, Langfang 065000, China

Abstract

The middle and lower reaches of the Yangtze River and its adjacent areas contain abundant mineral resources, especially porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits, and still have great potential for mineral prospecting. In this paper, geochemical blocks and local singularity mapping methods were used to delineate the spatial distribution pattern of Cu and identify the geochemical anomalies related to Cu deposits. Six copper geochemical blocks, each with an area of more than 1000 km2, were all spatially consistent with the locations of the five Cu ore districts (Edongnan, Jiurui, Anqing-Guichi, Tongling, and Ningzhen) and one ore field (Dexing) in the study area. Thus, geochemical blocks delineated with low-density geochemical data can effectively track the locations of ore districts or large ore deposits. Most of the known Cu deposits in the study area were located in anomalous areas with singularity indices less than 1.741 in the Cu singularity map. The singularity analysis could reduce the anomalous areas and identify the geochemical anomalies related to Cu deposits effectively. Geochemical blocks combining a local singularity mapping method is an effective tool for identifying prospecting targets.

Funder

Hebei Major Scientific and Technological Achievements Transformation Project

National Key R&D Program of Deep-penetrating Geochemistry

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3