Fertility Indicators for Porphyry-Cu-Au+Pd±Pt Deposits: Evidence from Skouries, Chalkidiki Peninsula, Greece, and Comparison with Worldwide Mineralizations

Author:

Economou-Eliopoulos Maria1ORCID,Zaccarini Federica2,Garuti Giorgio2

Affiliation:

1. Department of Geology and Geoenvironment, University of Athens, 15784 Athens, Greece

2. Geosciences Programme, Faculty of Science, University Brunei Darussalam, Jalan Tungku Link, Gadong, Bandar Seri Begawan BE1410, Brunei

Abstract

The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in the Balkan–Carpathian system, Himalayas, China, and Malaysia. However, only certain porphyry Cu-Au deposits are characterized by the presence of significant Pd and Pt contents (up to 20 ppm). This contribution provides new analytical data on porphyry-Cu-Au±Pd±Pt deposits from the Chalkidiki Peninsula and an overview of the existing geochemical characteristics of selected porphyry-Cu deposits worldwide in order to define significant differences between PGE-fertile and PGE-poor porphyry-Cu intrusions. The larger Mg, Cr, Ni, Co, and Re contents and smaller LILE elements (Ba and Sr) in fertile porphyry-Cu-Au-(PGE) reflect the larger contribution from the mantle to the parent magmas. In contrast, the smaller Mg, Cr, Ni, Co, and Re contents and larger Ba and Sr in PGE-poor porphyry-Cu-Mo deposits from the Chalkidiki Peninsula (Vathi, Pontokerasia, and Gerakario) and Russia–Mongolia suggest the presence of parent magmas with a more crustal contribution. Although there is an overlap in the plots of those elements, probably due to the evolution of the ore-forming system, consideration of the maximum contents of Mg, Cr, Ni, and Co is proposed. Magnetite which separated from the mineralized Skouries porphyry of Greece showed small negative Eu anomalies (Eu/Eu* ≥ 0.55), reflecting a relatively high oxidation state during the cooling of the ore-forming system. The relatively high, up to 6 ppm (Pd+Pt), and low Cr content towards the transition from the porphyry to epithermal environment, coupled with the occurrence of Pd, Te, and Se minerals (merenskyite, clausthalite), and tetrahedrite–tennantite in fertile porphyry Cu deposits (Elatsite deposit, Bulgaria), reflect a highly fractionated ore-forming system. Thus, in addition to the crustal and mantle recycling, metasomatism, high oxidation state, and abundant magmatic water, other factors required for the origin of fertile porphyry-Cu deposits are the critical degree of mantle melting to release Pt and Pd in the ore-forming fluids and the degree of fractionation, as reflected in the mineral chemistry and geochemical data.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3