Copper-Bearing Magnetite and Delafossite in Copper Smelter Slags

Author:

Gezzaz Hassan1,Ciobanu Cristiana L.1,Cook Nigel J.1ORCID,Ehrig Kathy12,Slattery Ashley3,Wade Benjamin3,Yao Jie1

Affiliation:

1. School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

2. BHP Olympic Dam, Adelaide, SA 5000, Australia

3. Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

The cooling paths and kinetics in the system Cu-Fe-O are investigated by the empirical micro- and nanoscale analysis of slags from the flash furnace smelter at Olympic Dam, South Australia. We aim to constrain the exsolution mechanism of delafossite (Cu1+Fe3+O2) from a spinel solid solution (magnetite, Fe3O4) and understand why cuprospinel (CuFe2O4) is never observed, even though, as a species isostructural with magnetite, it might be expected to form. Flash furnace slags produced in the direct-to-blister copper smelter at Olympic Dam contain four Cu-bearing phases: Cu-bearing magnetite, delafossite, metallic copper, and cuprite. Delafossite coexists with magnetite as rims and lamellar exsolutions, as well as bladed aggregates, associated with cuprite within Si-rich glass. The empirical compositions of magnetite and rim delafossite are (Fe2+6.89Cu2+0.86Co0.13Mg0.15Si0.02)8.05 (Fe3+15.52Al0.41Ti0.01Cr0.01)15.95O32, and (Cu1+0.993Co0.002Mg0.002)0.997(Fe3+0.957Al0.027Ti0.005Si0.004)0.993O2, respectively. The measured Cu content of magnetite represents a combination of a solid solution (~6 mol.% cuprospinel endmember) and exsolved delafossite lamellae. Atomic-resolution high-angle annular dark field scanning transmission electron microscope (HAADF STEM) imaging shows epitaxial relationships between delafossite lamellae and host magnetite. Defects promoting the formation of copper nanoparticles towards the lamellae margins suggest rapid kinetics. Dynamic crystallization under locally induced stress in a supercooled system (glass) is recognized from misorientation lamellae in delafossite formed outside magnetite grains. The observations are concordant with crystallization during the cooling of molten slag from 1300 °C to <1080 °C. Melt separation through an immiscibility gap below the solvus in the system Cu-Fe-O is invoked to form the two distinct delafossite associations: (i) melt-1 from which magnetite + delafossite form; and (ii) melt-2 from which delafossite + cuprite form. Such a path also corroborates the published data explaining the lack of cuprospinel as a discrete phase in the slag. Delafossite rims form on magnetite at a peritectic temperature of ~1150 °C via a reaction between the magnetite and copper incorporated in the oxide/Si-rich melt. The confirmation of such a reaction is supported by the observed misfit orientation (~10°) between the rim delafossite and magnetite. HAADF STEM imaging represents a hitherto underutilized tool for understanding pyrometallurgical processes, and offers a direct visualization of phase relationships at the smallest scale that can complement both experimental approaches and theoretical studies based on thermodynamic modelling.

Funder

Australian Research Council

BHP Olympic Dam

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3