Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone

Author:

Mohammad Yousif1ORCID,Abdulla Kurda1,Azizi Hossein2ORCID

Affiliation:

1. Department of Geology, College of Science, University of Sulaimani, Sulaymaniyah 46011, Iraq

2. Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran

Abstract

The Bulfat Igneous Complex comprises the Bulfat and Walash groups and is situated in the Zagros Suture Zone, in the junction of Arabian and Eurasian plates. Zircon U-Pb data indicat an age of 63.7 ± 1.5 Ma for the trondhjemite rocks within the Bulfat group. Walash group is primarily composed of basalt to andesite rocks, interbedded with sedimentary rocks. Zircon U-Pb dating yields an age of 69.7 ± 2.7 Ma for the Walash group. Whole rocks chemistry shows that the Bulfat rocks have affinity to MORB and calc alkaline series but Walsh are mainly plot in the calc alkaline field. Whole rocks Sr-Nd isotope ratios show that the 143Nd/144Nd (i) changes from 0.51243 to 0.52189 and 87Sr/86Sr(i) ratios vary from 0.70345 to 0.7086. The calculated εNd(t) values, based on the CHUR, yield predominantly high positive values ranging from +6 to +8 for most samples. However, a few samples exhibit lower values (+2 to +3). Our data suggest that the interaction between lithospheric (depleted mantle, MORB-Like) and asthenospheric mantle (OIB-like) melts significantly controlled the magmatic evolution of the Bulfat group. The strong positive εNd(t) values (ranging from +6 to +8) align more consistently with a highly depleted lithospheric mantle source for the Walsh group. Therefore, the gradual transition from an arc signature at 70 Ma to a MORB signature around 63 Ma, occurred over a relatively short period of about 10 million years, and indicates the presence of an arc and back-arc system in the Neotethys ocean before the collision of the Arabian and Iran plates during the Cenozoic.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3