A Lightweight Building Extraction Approach for Contour Recovery in Complex Urban Environments

Author:

He Jiaxin1,Cheng Yong2ORCID,Wang Wei1,Ren Zhoupeng3ORCID,Zhang Ce4ORCID,Zhang Wenjie5

Affiliation:

1. School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. School of Software, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK

5. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

High-spatial-resolution urban buildings play a crucial role in urban planning, emergency response, and disaster management. However, challenges such as missing building contours due to occlusion problems (occlusion between buildings of different heights and buildings obscured by trees), uneven contour extraction due to mixing of building edges with other feature elements (roads, vehicles, and trees), and slow training speed in high-resolution image data hinder efficient and accurate building extraction. To address these issues, we propose a semantic segmentation model composed of a lightweight backbone, coordinate attention module, and pooling fusion module, which achieves lightweight building extraction and adaptive recovery of spatial contours. Comparative experiments were conducted on datasets featuring typical urban building instances in China and the Mapchallenge dataset, comparing our method with several classical and mainstream semantic segmentation algorithms. The results demonstrate the effectiveness of our approach, achieving excellent mean intersection over union (mIoU) and frames per second (FPS) scores on both datasets (China dataset: 85.11% and 110.67 FPS; Mapchallenge dataset: 90.27% and 117.68 FPS). Quantitative evaluations indicate that our model not only significantly improves computational speed but also ensures high accuracy in the extraction of urban buildings from high-resolution imagery. Specifically, on a typical urban building dataset from China, our model shows an accuracy improvement of 0.64% and a speed increase of 70.03 FPS compared to the baseline model. On the Mapchallenge dataset, our model achieves an accuracy improvement of 0.54% and a speed increase of 42.39 FPS compared to the baseline model. Our research indicates that lightweight networks show significant potential in urban building extraction tasks. In the future, the segmentation accuracy and prediction speed can be further balanced on the basis of adjusting the deep learning model or introducing remote sensing indices, which can be applied to research scenarios such as greenfield extraction or multi-class target extraction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3