From Space to Field: Combining Satellite, UAV and Agronomic Data in an Open-Source Methodology for the Validation of NDVI Maps in Precision Viticulture

Author:

Govi David12ORCID,Pappalardo Salvatore Eugenio3ORCID,De Marchi Massimo2ORCID,Meggio Franco45ORCID

Affiliation:

1. Polaris Engineering Spa, Via Turati 29, 20121 Milano, Italy

2. Advanced Master GIScience and UAS, Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35100 Padova, Italy

3. Laboratory GIScience and Drones for Good, Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35100 Padova, Italy

4. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy

5. Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Treviso, Italy

Abstract

Recent GIS technologies are shaping the direction of Precision Agriculture and Viticulture. Sentinel-2 satellites and UAVs are key resources for multi-spectral analyses of vegetation. Despite being extensively adopted in numerous applications and scenarios, the pros and cons of both platforms are still debated. Researchers have currently investigated different aspects of these sources, mainly comparing different vegetation indexes and exploring potential relationships with agronomic variables. However, due to the costs and limitations of such an approach, a standardized methodology for agronomic purposes is still missing. This study aims to fill such a methodology gap by overcoming the potential flaws or shortages of previous works. To achieve this, an image acquisition campaign covering 6 months and over 17 hectares was carried out, followed by an NDVI comparison between Sentinel-2 and UAV to eventually explore relationships with agronomic variables. Comparative analyses were performed by using both classical (Ordinary Least Squares regression and Pearson Correlation) and spatial (Moran’s Index) statistical approaches: here, 90% of cases show r and MI scores above 0.6 for plain images, with these scores expectedly lowering to 72% and 52% when considering segmented images. Moreover, NDVI thematic maps were classified into clusters and validated by the Chi-squared test. Finally, the relationship and distribution of agronomic variables within NDVI and clustered maps were consistently validated through the ANOVA test. The proposed open-source pipeline allows to strengthen existing UAV and satellite applications in Precision Agriculture by integrating more agronomic variables.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3