A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images

Author:

Abady Lydia1ORCID,Dimitri Giovanna Maria1ORCID,Barni Mauro1

Affiliation:

1. Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy

Abstract

The current image generative models have achieved a remarkably realistic image quality, offering numerous academic and industrial applications. However, to ensure these models are used for benign purposes, it is essential to develop tools that definitively detect whether an image has been synthetically generated. Consequently, several detectors with excellent performance in computer vision applications have been developed. However, these detectors cannot be directly applied as they areto multi-spectral satellite images, necessitating the training of new models. While two-class classifiers generally achieve high detection accuracies, they struggle to generalize to image domains and generative architectures different from those encountered during training. In this paper, we propose a one-class classifier based on Vector Quantized Variational Autoencoder 2 (VQ-VAE 2) features to overcome the limitations of two-class classifiers. We start by highlighting the generalization problem faced by binary classifiers. This was demonstrated by training and testing an EfficientNet-B4 architecture on multiple multi-spectral datasets. We then illustrate that the VQ-VAE 2-based classifier, which was trained exclusively on pristine images, could detect images from different domains and generated by architectures not encountered during training. Finally, we conducted a head-to-head comparison between the two classifiers on the same generated datasets, emphasizing the superior generalization capabilities of the VQ-VAE 2-based detector, wherewe obtained a probability of detection at a 0.05 false alarm rate of 1 for the blue and red channels when using the VQ-VAE 2-based detector, and 0.72 when we used the EfficientNet-B4 classifier.

Funder

Defense Advanced Research Projects Agency

Publisher

MDPI AG

Reference45 articles.

1. Deep learning in bioinformatics;Min;Briefings Bioinform.,2017

2. Deep learning;LeCun;Nature,2015

3. A survey of the usages of deep learning for natural language processing;Otter;IEEE Trans. Neural Networks Learn. Syst.,2020

4. Multimodal and multicontrast image fusion via deep generative models;Dimitri;Inf. Fusion,2022

5. Object detection with deep learning: A review;Zhao;IEEE Trans. Neural Networks Learn. Syst.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3