Self-Prompting Tracking: A Fast and Efficient Tracking Pipeline for UAV Videos

Author:

Wang Zhixing12345,Zhou Gaofan13,Yao Jinzhen13,Zhang Jianlin13ORCID,Bao Qiliang13,Hu Qintao13

Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China

4. School of Electronic, Electrical and Communication Engineering, Chinese Academy of Sciences, Beijing 100049, China

5. National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China

Abstract

In the realm of visual tracking, remote sensing videos captured by Unmanned Aerial Vehicles (UAVs) have seen significant advancements with wide applications. However, there remain challenges to conventional Transformer-based trackers in balancing tracking accuracy and inference speed. This problem is further exacerbated when Transformers are extensively implemented at larger model scales. To address this challenge, we present a fast and efficient UAV tracking framework, denoted as SiamPT, aiming to reduce the number of Transformer layers without losing the discriminative ability of the model. To realize it, we transfer the conventional prompting theories in multi-model tracking into UAV tracking, where a novel self-prompting method is proposed by utilizing the target’s inherent characteristics in the search branch to discriminate targets from the background. Specifically, a self-distribution strategy is introduced to capture feature-level relationships, which segment tokens into distinct smaller patches. Subsequently, salient tokens within the full attention map are identified as foreground targets, enabling the fusion of local region information. These fused tokens serve as prompters to enhance the identification of distractors, thereby avoiding the demand for model expansion. SiamPT has demonstrated impressive results on the UAV123 benchmark, achieving success and precision rates of 0.694 and 0.890 respectively, while maintaining an inference speed of 91.0 FPS.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3