Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification

Author:

Zhang Guoqing123ORCID,Liu Tianqi1,Ye Zhonglin4

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science and Technology, Nanjing 210094, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

4. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, Xining 810008, China

Abstract

In contemporary times, owing to the swift advancement of Unmanned Aerial Vehicles (UAVs), there is enormous potential for the use of UAVs to ensure public safety. Most research on capturing images by UAVs mainly focuses on object detection and tracking tasks, but few studies have focused on the UAV object re-identification task. In addition, in the real-world scenarios, objects frequently get together in groups. Therefore, re-identifying UAV objects and groups poses a significant challenge. In this paper, a novel dynamic screening strategy based on feature graphs framework is proposed for UAV object and group re-identification. Specifically, the graph-based feature matching module presented aims to enhance the transmission of group contextual information by using adjacent feature nodes. Additionally, a dynamic screening strategy designed attempts to prune the feature nodes that are not identified as the same group to reduce the impact of noise (other group members but not belonging to this group). Extensive experiments have been conducted on the Road Group, DukeMTMC Group and CUHK-SYSU-Group datasets to validate our framework, revealing superior performance compared to most methods. The Rank-1 on CUHK-SYSU-Group, Road Group and DukeMTMC Group datasets reaches 71.8%, 86.4% and 57.8%, respectively. Meanwhile, our method performance is explored on the UAV datasets of PRAI-1581 and Aerial Image, the infrared datasets of SYSU-MM01 and CM-Group and the NIR dataset of RBG-NIR Scene dataset; the unexpected findings demonstrate the robustness and wide applicability of our method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3