Influence of Stress on Kinetics and Transformation Plasticity of Ferrite Transformation Based on Hysteresis Effects

Author:

Ding Wenhong,Liu Yazheng,Xie Jianxin,Sun Li,Liu Tianwu

Abstract

Transformation plasticity and kinetics play an essential role in the prediction of residual stresses resulting from transformation. This paper is devoted to the investigation of the influence of stress on the kinetics and transformation plasticity of ferrite for H420LA steel. It has been shown that under small external stresses, lower than the yield stress of the weaker phase, the ferrite transformation is inhibited at the beginning of the transformation in the continuous cooling process and the mechanical stabilization of austenite is observed, due to transformation hysteresis effects. This phenomenon affects the metallurgical and mechanical behaviors of the transformation progress. However, most existing models ignore these effects, leading to deviations in the description of transformation plasticity during the transformation progress. Considering the hysteresis effects, the micromechanical model for kinetics and transformation plasticity is reexamined. A general formulation of austenite decomposition kinetics accounting for these effects is developed to better describe the phase transformation under a continuous cooling process. In addition, the influence of hysteresis effects on the evolution of transformation plasticity is analyzed. Consideration of the hysteresis effects decreases the discrepancy between the calculated and experimental values. This will allow better prediction of residual stresses in the thermomechanically controlled processes.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3