Fatigue Crack Growth Rate of the Long Term Operated Puddle Iron from the Eiffel Bridge

Author:

Lesiuk GrzegorzORCID,Correia José A. F. O.,Smolnicki MichałORCID,De Jesus Abílio M. P.ORCID,Duda Monika,Montenegro Pedro A.ORCID,Calcada Rui A. B.

Abstract

The paper summarises an experimental study on the fatigue crack propagation and cracks paths in ancient steel—19th-century puddle iron from the Eiffel bridge. The tests were performed with the load R-ratio equal to 0.05 and 0.5. All tests were performed under different notch inclinations (mode I + II). The fatigue crack growth rate in the tested material is significantly higher than its “modern” equivalent—low carbon mild steel. The crack closure phenomenon occurs in specimens during the process of crack growth. Understanding this aspect is crucial for the examination of a stress R-ratio influence on kinetic fatigue fracture diagram (KFFD) description. Both the experimental and numerical approach, using the HP VEE environment, has been applied to the crack closure as well as the crack opening forces’ estimation. These analyses are based on the deformation of the hysteresis loop. The algorithm that was implemented in the numerical environment is promising when it comes to describing the kinetics of fatigue crack growth (taking into consideration the crack closure effect) in old metallic materials.

Funder

Portuguese Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3