Numerical Investigation of Secondary Deformation Mechanisms on Plastic Deformation of AZ31 Magnesium Alloy Using Viscoplastic Self-Consistent Model

Author:

Lian YongORCID,Hu LiORCID,Zhou Tao,Yang Mingbo,Zhang Jin

Abstract

Uniaxial tension and compression of AZ31 magnesium alloy were numerically investigated via the viscoplastic self-consistent (VPSC) model to shed a light on the effect of secondary deformation mechanisms (prismatic <a> slip, pyramidal <c+a> slip, and { 10 1 ¯ 1 } contraction twinning) during plastic deformation. The method adopted in the present study used different combinations of deformation mechanisms in the VPSC modeling. In terms of the pyramidal <c+a> slip, it served as the first candidate for sustaining the extra plastic strain during the plastic deformation. The improvement of activity in the pyramidal <c+a> slip contributed to the increase in the mechanical response and the splitting of pole densities in { 0002 } pole figure during uniaxial tension. As for the prismatic <a> slip, its increasing activity was not only conducive to the improvement of flow stress in mechanical response, but also responsible for the splitting of pole densities in { 0002 } pole figure during uniaxial compression. With respect to the { 10 1 ¯ 1 } contraction twinning, it had a negligible influence on the plastic deformation of AZ31 magnesium alloy in terms of the mechanical response as well as the slip and the twinning activities. However, it is better to include the { 10 1 ¯ 1 } contraction twinning in the VPSC modeling to more accurately predict the texture evolution.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3